

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(AUTONOMOUSINSTITUTION-UGC, GOVT. OFINDIA)

Department of AERONAUTICAL ENGINEERING

AIR BREATHING PROPULSION

QUESTION BANK

Prepared by: B. NAVEENA Assistant Professor Department of ANE <u>naveena.aero@mrcet.ac.in</u>

Code No: R20A2111 MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

III B.Tech I Semester Regular/Supplementary Examinations, January 2024 Air Breathing Propulsion

(AE)										
Roll No										

Time: 3 hours

Max. Marks: 70

Note: This question paper Consists of 5 Sections. Answer **FIVE** Questions, Choosing ONE Question from each SECTION and each Question carries 14 marks.

SECTION-I

1 significance of different engine stations in the performance analysis of an aircraft engine.

OR

2 T-s plots for a turbo-jet and turbo-prop engines. Explain the functioning and thermodynamics of a turbojet engine and plot the variation of pressure, temperature and velocity in as best manner as you can.

SECTION-II

3 s types of exhaust nozzles for a turbojet engine. What are their advantages and disadvantages?

OR

4 hree most commonly used types of thrust reversers which are used in jetpowered passenger aircrafts. with illustrations.

SECTION-III

5 :onsiderations that affect the selection of blade profiles in various categories of turbines.

OR

6 Analyse a performance map of an axial compressor and interpret the information provided, including surge lines, choke points, and efficiency contours.

SECTION-IV

7 With a neat sketch, explain the combustion chamber geometry and bring out the various zones that play a part in the process of combustion.

OR

8 Enumerate and discuss briefly the effect of four operating variables on burner performance.

SECTION-V

9 ynamic and transient responses involved in matching an engine to an aircraft. How do these responses impact the overall performance and safety of the system?

OR

10 teps involved in sizing an aircraft engine for a specific application. What factors are critical in determining the appropriate size for an engine?

Code No: R20A2115 MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (Autonomous Institution – UGC, Govt. of India)

IV B.Tech I Semester Regular Examinations, October/November 2023

Space Propulsion

(ANE)											
Roll No											

Time: 3 hours

Max. Marks: 70

Note: This question paper Consists of 5 Sections. Answer **FIVE** Questions, Choosing ONE Question from each SECTION and each Question carries 14 marks.

		SECTION-I								
1		Explain the working principle of ramjet with a neat schematic diagram.								
		Explain in detail the need for supersonic combustion technology.	[7M]							
		OR								
2		Describe the flow process involved in Supersonic Inlets	[7M]							
		Explain principle, construction, operation of turbo-ramjet	[7M]							
		SECTION-II								
3		Describe the working of a typical liquid propellent rocket engine with Schematic diagram	[7M]							
		Compare the solid propulsion systems with liquid propulsion systems and mention their comparative advantages.	[7M]							
		OR								
4	A	What are the characteristics of liquid propellants and list all the types of liquid propellants.	[7M]							
	B	Explain the various thrust vector control methods involved in Solid Rocket Motor. SECTION-III	[7M]							
5		Describe various consideration in determining Dimensions of Nuclear Reactor and Leakage of Neutrons	[14M]							
		OR								
6	\boldsymbol{A}	Describe the propellant flow and cooling systems used in Nuclear reactor	[7M]							
	B	Describe the start-up and shutdown sequences used in Nuclear engine	[7M]							
		SECTION-IV								
7	A	Describe the working of Electro static thrusters and Electro thermal propulsion devices.	[7M]							
	B	Explain the working of a Arc-jet Thruster with a neat diagram	[7M]							
		OR								
8	A	Write the working principle of MEMS micro propulsion	[7M]							
	В	Describe the working of Solar and Magnetic Sails <u>SECTION-V</u>	[7M]							
9	A	Mention the Role of space launch vehicles and various functions of military space launch vehicle	[7M]							
	B	Describe the various space mission profiles	[7M]							
		OR								
10	\boldsymbol{A}	Describe the various concepts involved in SSTO	[7M]							
	B	Describe the effect of Propellant slosh and Propellant hammer on Rocket performance	[7M]							

			(Auto	onomo	us In	stitu	ition	1 – U	JGC	, Go	ovt.	of Iı	ndia)		
	II	B.Tech	II Sem	ester	Sup	plen	nen	tary	y Ey	kam	ina	tion	ıs, J	anu	ary 2	024
	Air Breathing propulsion															
(AE)																
			Roll	No												
Tin	1e: 3	hours									_	Ma	x. M	arks:	70	
Not	e:]	This quest	ion paper C	Consists	of 5 S	Sectio	ons. A	nsw	er FI	VE (Quest	tions,	, Cho	osing	g ONE (Question
fror	n eac	n SECTIC	JN and eac	n Quest	ion ca	rries	14 m **	arks. **								
					SEC	TIO	N-I									
1	a)	Justify th	ne need for	thrust a	ugme	ntatic	on and	d list	out i	ts ad	vanta	iges (of it.			[7M]
	b)	Compor	o rocinroc	otina o	nd iot	ong	inas					0				 [7]\/[]
	U)	Compa	e recipioc	ating a	nu jei	eng	mes.									[/1 v1]
~	`	T.1	- 11 (1. 6. (.1	OR		11		- f						[#] (]
2	a) h)	Identify	all the fact	ors which city f	in are	iet e	ung t noine	ine th	rust	or a j m/s	et en	gine.	ard f	light	velocity	[7 M] 7 [7M]
	U)	is 1250	m/s and th	ne airflo	ow rat	e is '	ngine 78.6	kg/s.	Cal	culat	e the	thru	ist an	ng n	opulsive	, [/1 v1]
		efficienc	y of a jet e	ngine.				83.						· r -·	r	
					SEC.	ΓΙΟΙ	N-II									
3	a)	Identify	and discuss	s the pro	blems	s in ir	ilets a	at hig	gh-sp	eed f	lows	•				[7M]
	b)	Derive th	he non-idea	al equati	ions fo	or var	10US I	nozz. D	les.							[7 M]
4	a)	Describe	e thrust revo	ersers a	nd vec	torin	g med	r chani	isms.							[7M]
-	b)	b) A diffuser on a Mach 2 aircraft operates with a standing normal shock outside of the									e [7M]					
	,	inlet at S	STP. If the	internal	diffu	ser re	cove	ry fa	ctor	is 0.9	90, w	hat a	re th	e diff	user exi	it
		total pres	ssure and th	he total	pressu	re re	cover	y fro	m th	e fre	estrea	am to	the o	diffus	ser exit?	2
5	e)	Summo	rizo tho c	oncont	s of	<u>54</u> tho t	CTI ara u	<u>ON-</u> uhirl	<u>III</u> sto	11	nd a	1800	of		atrifuad	1 [7] 1
5	a)	compres	sor	concept	\$ 01	the p	pre-v	VIIII I	, sta	II ai	iu si	nge	01 8	a cei	ninuga	11 [/1 v1]
	b)	Compare	e centrifuga	al and a	xial flo	ow co	ompre	essor	s.							[7M]
	,						0	R	-							[·]
6	a)	Describe	the proces	s of est	imatin	g tur	bine s	stage	perf	orma	nce.					[7M]
	b)	Discuss	various tur	bine bla	de coo	oling	meth	ods.	TX 7							[7 M]
7	a)	Discuse	the overall	total pr	essure	<u>1099</u>	of the	<u>- UN-</u> e hur	<u>IV</u> ner							[7M]
,	a) b)	Explain	the combus	stion me	chani	sm in		mbus	stion	chan	nber	with	a nea	ıt ske	tch.	[7M]
	- /	r					0	R								r1
8	a)	Enumera	te perform	ance pa	ramet	ers ar	nd con	mbus	stion	effic	iency	of b	urne	rs.		[7M]
	b)	Determin	ne the char	acteristi	ic igni	tion t	time t	t_c, th	e blo	w-of	ť velo	ocity	V_{1c} ,	and t	he flam	e [7M]
		holder st	ability for -0.2×15	the follo	owing	data:	I =	800 I Idar	K, M	1 = 0		= 1.3	53, φ=	= 1.4,	H = 25	4
		ппп., Б -	- 0.3, a 13-	ucg hal	i-aligi	e nar SI	ne 110 E CT I	ION.	·V	press	ures	r UI	0.4 a	inu ().	1 atlll.	
9	a)	Illustrate	e the use of	matchin	ng and	l cycl	e ana	lysis	in th	ne sec	cond	stage	e of d	esign	•	[7M]
	b)	Summar	ize the mat	ching p	rocedu	ire fo	r a fr	ee po	ower	turbi	ne.	U		U		[7M]
			c			-	0	R								-
10	a)	Elaborat	e on factor	s involv	ed in o	engin	e sele		n.							[7M]
	D)	Give the	importanc	e or the	aircra	.n mi	ssion	anal	ysis.							

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

Code No: R18A2109

R18

```
***
```